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Abstract 

  

This chapter revisits two issues raised by the philosopher David Hume: 1) causal 

relations are beliefs formed in the mind based on inherently noncausal data (Hume, 1739/1987), 

and 2) experience is useful only if the future resembles the past (Hume, 1748/1975). These issues 

respectively specify the input and output for a rational causal-induction process. Together they 

raise the question: How is it possible to tease apart a target candidate cause’s influence from that 

due to background causes, in a way that yields causal knowledge that generalizes across the 

learning and application contexts?  The first half of the chapter reviews Hume’s first issue from 

multiple contemporary perspectives – cognitive psychology, cognitive neuroscience, perceived 

causality in different contexts and inertial reference frames, and cognitive causal “illusions”. We 

explain why, in view of the noncausal input and the desired output – useable causal beliefs – the 

causal-belief formation and revision process requires the causal invariance constraint: an 

assumption that there are causes that operate the same way in an application context as in the 

learning context.  Causal invariance, along with parsimony, constrain the search for useable 

causal beliefs in the vast empirical space of possible representations. The second half of the 

chapter presents an argument showing that, without the causal-invariance constraint, intuitive 

causal induction and normative statistical inference would both fail to aim at generalizable causal 

beliefs. To our knowledge, Hume’s two issues have not been examined from the perspective of 

cognitive constraints that would be conducive to arriving at generalizable causal knowledge. 

Keywords: causal induction, decomposition function, invariance, generalizability, statistical 

inference, observability of causal relations  
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The present chapter is an introduction to a basic problem in causal induction: how is 

generalizable causal knowledge possible?  We first present the problem of causal induction as 

posed by David Hume (1739/1987, 1748/1975) and clarify three confusions surrounding this 

problem. We go on to review empirical evidence from four perspectives that all provide support 

for Hume’s view: Causal relations are not in the input to the reasoner/cognitive system. What is 

in the input are merely the states of the candidate causes and the state of the outcome-in-question 

due to all its causes present in the context. Making a causal inference about a target candidate 

cause therefore requires decomposing the observed outcome into contributions from the target 

cause and from other causes of the outcome in the context. Nature does not tell the reasoner how 

to decompose the observed outcome — the task is up to the reasoner. After establishing the 

problem of causal induction from the perspective of cognitive science, we explain what the 

assumption of causal invariance is and why it is a necessary constraint for rational causal 

induction. We end the chapter by relating our analysis of causal invariance to normative causal 

inference in statistics. Our chapter does not assume any background knowledge of work on 

causal induction in philosophy or psychology. Our intention is for it to be of interest to upper-

level undergraduate students, graduate students, and anyone else who enjoys thinking through 

the problem our mind solves when it aims to infer a generalizable causal relation. 

People often have the compelling intuition that they directly “see” causation, and thus 

have no need to infer causation.  If they see an unfortunate person killed by a volcanic eruption, 

overtaken by a pyroclastic flow, it may seem hard to deny that they perceived the reality of the 

volcanic eruption killing the person.1  If they see a moving ball hit a stationary ball, and the 

stationary ball starts to move away, they “see” the true “launching” into motion of one ball by 

motion in the other. If their right-hand fingers scratch a mosquito bite on their left arm, and their 

left arm feels relief from the itch, they directly perceive the relieving of the itch by their 

scratching. 

Hume (1739/1987) argues that counter to our compelling intuition that a moving ball 

launches a stationary ball when we observe the former hit the latter, the causal aspect of that 

intuition is an inference in our mind and is absent in the observation itself. Hume (1748/1975, p. 

37) also brings attention to an assumption so intuitive that we may be unaware of making it: 

 
1 Our thanks to an anonymous reviewer for the example. 
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Whenever we generalize from a learning context to an application context, we assume, “the 

future will resemble the past.”  He goes on to state its implication, “If there is any suspicion that 

the course of nature may change, … all experience becomes useless …”  Together, Hume’s two 

points raise the question: if causal perceptions and beliefs are mental constructs absent in the 

observations in our experience, on what basis would one expect these mental constructs to 

capture the unchanging course of nature, such that experience is not useless?   

 

Three confusions clouding the nature of the problem of causal induction 

It is tempting to conclude that the compelling perception of causal relations renders 

inference unnecessary, at least in cases in which causation appears “observable”. But the 

conclusion that causation is observable involves three sources of confusion. 

The first is a confusion between the input of the causal induction process and its output.  

The conclusion mistakes the compelling perception of causation, as illustrated in our examples, 

to be the input to the causal induction process, when it is in fact the output to be explained (see 

Henle, 1962, for an example in which confusion around the input to a cognitive process, 

deductive inference in her case, creates confusion about the process itself).  This confusion may 

be due to the vagueness of Hume’s criterion for what he does or does not find “evident” in the 

observations (1739/1987, pp. 649-650).  In contemporary information-processing language, a 

paraphrase of Hume’s thesis that causal relations are not evident in the observations would be: 

Causal relations are not in the input available to a process that infers cause and effect – the 

construct we label the causal-induction process.  Given that our sensory input does not contain 

causal relations, but we “know” causal relations, there must be a downstream process that does 

the work of arriving at the causal output from its noncausal input.  

The unobservability of causation is a specific form of the general challenge of 

formulating adaptive knowledge: reality in the world does not come represented (Goodman, 

1955; Hawking & Mlodinow, 2010; Kant, 1781/1965).  All our perceptions and conceptions of 

reality are our representations of it, formulated within an infinite search space.  Consider our 

perception of a cube. The 2-dimensional image cast by a cube on our retina is ambiguous in that 

it can map onto an infinite number of differently shaped 3-dimensional objects (e.g., see Pizlo, 

2001). Yet, despite the inherent under-determination of the distal object, we perceive a cube. 

Narrowing down to this adaptive percept in the infinite space of possible distal objects illustrates 
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the application of potent constraints in the form of a priori assumptions, in this case the default 

assumption that the distal object has the simplest form that is consistent with the image (i.e., the 

object is a “parsimonious explanation” of the image).  

Thus, with respect to the stereoscopic vision process, 3-dimensionality is 

“unobservable”— a shorthand for “being absent in the input to a process” — and is the to-be-

explained output of the process. Likewise, causation is “unobservable” with respect to the causal 

induction process, and the perceived “necessary connection” between a cause and an effect is the 

to-be-explained output (Hume, 1739/1987).  

A second source of confusion is that the apparent examples of observable causation often 

involve prior causal knowledge at a more abstract level than the particular causal relation in 

question. Although a reasoner may be witnessing a pyroclastic flow hitting someone for the first 

time, they almost certainly know, at a more general level, from knowledge of landslides and 

fires, that being struck by massive flows of hot or heavy matter can be fatal. Lien and Cheng’s 

(2000) hierarchical consistency hypothesis explains how consistency and inconsistency of 

covariations between potential cause and effect variables across representations at different 

levels of abstraction can explain conclusions of causality or noncausality ostensibly based on a 

single instance. Their paper presents evidence showing that information beyond what is in the 

single instance gets recruited, more specifically, that judgments involving a single instance can 

be explained by retrieval from causal schemas in long-term memory formed by past causal 

inferences, rather than by “observable” causality. [See Rips (2011) for a review of evidence and 

arguments against perception of causality as the source of the causal knowledge.] 

A third source of confusion is that examples of observable causation concern situations in 

which only one cause is perceived to be present (i.e., the reasoner assumes no background 

causes).  In such cases, an inferential process, either inductive (Cheng, 1997) or deductive, can 

account for the causal percept. Deduction such as the following would reach our intuitive causal 

conclusions: 

Premises:   1) effect e occurred in situation x 

  2) effects do not occur without a cause 

  3) c is the only candidate cause in situation x 

Conclusion:   c caused e. In other words, the fact that we humans are able to judge 

causation in situations involving one single plausible cause does not imply that we do not have a 
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general causal-induction process capable of inferring new causal knowledge in situations 

involving more than one plausible cause. The single-cause situation may be regarded as a trivial 

case of the application of that inference process.  

To illustrate that causation in situations with a single plausible cause is not observed but 

inferred, we review the striking “phantom hand” phenomenon (Armel & Ramachandran, 2003; 

Botvinick & Cohen, 1998; Ramachandran & Hirstein, 1998). More generally, the phenomenon is 

a good reminder of the inferential nature of our conception of reality. Armel and Ramachandran 

report that participants with normal sensation and perception perceived touch sensations as 

arising from a rubber hand. This occurred when both the rubber hand in view and participants’ 

own out-of-view real hand were repeatedly tapped and stroked in a random sequence in 

synchrony. In other words, participants perceived the tapping and stroking of the rubber hand as 

causes of their perceived touch sensations, as if the rubber hand is part of their body. An 

analogous illusion was obtained even when a table top was similarly tapped. The perceived 

causal relation could not have been an “observation” of causation, because no such actual 

causation existed in the experimental setup. The perception was so internalized that when the 

rubber hand or table was then “threatened” with potential injury, participants winced and 

sweated. It was as if the participant perceived a threat to the table as a threat to their hand. 

Consistent with their behavioral response, participants displayed a strong skin conductance 

response (SCR)2  in the real hand, even though no threat was issued to it. Notably, when there is 

only one plausible cause of our sensations, even something so fundamental as the perceived 

boundary of our body is mutable to allow attribution of the sensations to that single cause. Armel 

and Ramachandran write (p. 1499), “one’s body image is itself a ‘phantom’: one that the brain 

constructs for utility and convenience”.  

Thus, for the hypothesis of “observable causation” to be tenable, processes such as 

deduction and the recruitment of prior causal knowledge must be ruled out as explanations of the 

causal conclusion. We propose that, to provide clear evidence for observable causation, the 

critical discriminating test is to compare causal judgment between two situations: A) a single-

cause situation and B) a situation in which a second cause is introduced without disturbing the 

causal sequence in situation A. When multiple plausible causes are present, from either current 

 
2 SCR is a physiological measure of psychological and autonomic arousal that is not under voluntary 

control. 
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information or prior knowledge, it would no longer be possible for deduction to narrow down to 

one cause as the compelling conclusion. But if a causal relation is “observable”, the relation 

should be just as discernable, whether there is one cause or two causes present. If we can see an 

apple in a bowl, we should still be able to see it when another apple is placed in the bowl. We 

presently review some empirical evidence comparing the two types of situations. 

 

Four perspectives in support of the unobservability of causal relations (Hume, 

1739/1987) 

Now that we have clarified the three common sources of confusion, let us turn to 

empirical evidence in favor of causal relations being unobservable rather than observable. We 

examine this issue from four perspectives: 1) psychological evidence on the perception of 

causality when there is more than one cause,  2) the relativity principle with respect to the 

invariance of laws of motion across inertial reference frames (Newton, 1687/1713/1726/1999), 

3) the visual input to our cognitive system and its relation to the cognitive neuroscience of color 

perception and, by extension, causal perception, and 4) causal inference about internal 

psychological outcomes.  
 

Perspective 1: When a second cause is introduced, the compelling perception of causation 

disappears. 

We compare two situations below, a single-cause and a two-cause situation, summarizing 

the discussion of them in Cheng (1993). 

Michotte’s (1946/1963) Experiment 21 provides a clear demonstration that perceived 

launching is not the result of a direct perception of causation.  Because Experiment 21 differs 

from the basic version of Michotte's often-cited launching experiments in only one respect, we 

first describe the basic version in Experiment 1.  In Experiment 1 (see top sequence in Figure 1), 

an Object B is in the middle of the screen, and the subject fixates on it. At a given moment, 

Object A enters the screen from the left and moves toward B at a constant speed. Object A stops 

at the moment it comes into contact with B, while B then starts and moves to the right. The blow 

by A is often perceived to “send B off,” “transfer its momentum to B,” “cause B to move,” or  

“launch B”.  
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Figure 1. Illustration of Michotte’s (1946/1963) Experiments 1 (top sequence) and 21 (bottom 

sequence). The visual stimuli are identical in the two experiments from the moment of impact on 

(represented in the two rightmost frames in the top and bottom panels). Arrows under Objects A 

and B indicate motion in the direction of the arrow (see a video of the two demonstrations at 

https://youtu.be/ZVZpggGXl08). 

Describing his results when the collision satisfies some fairly strict spatio-temporal 

constraints (e.g., B has to start moving within a few tenths of a second of the collision, A cannot 

stop before touching B), Michotte (1946/1963) writes, "The impression is clear: it is the blow 

given by A which makes B go, which produces B's movement" (p. 20). He regards his findings 

as refuting Hume's (1748/1975, Section VII, part ii, p. 74) claim that “we never can observe any 

tye between ‘a cause and an effect’”. Instead, the cause that produces motion can be “directly 

experienced” (Michotte, p. 21).  

In the launching phenomenon, the effect may be characterized as “Object B moving away 

starting at the moment of collision,” and the cause may be characterized as “Moving Object A 

hitting Object B.” Note that the input to the perceptual process consists of the activities of a 

mosaic of photoreceptors that change over time, nothing more. “Launching” is not in the activity 

of any of the photoreceptors, and there is no homunculus. Experiment 21 shows results 

consistent with this information-processing perspective. 

Experiment 21 illustrates the two-cause situation (see bottom sequence in Figure 1). One 

often overlooked finding is that the perception of launching is critically dependent on the state of 

B before A collides with it. The stimuli in Experiment 21 (Michotte, 1946/1963) is identical to 

those in Experiment 1, except that B moves to and fro before A enters. B’s oscillation is timed so 

that A collides with B just as B comes to a rest and is about to move to the right. The sequence at 

impact and thereafter is identical to that in Experiment 1. Because the effect of impact by A on B 

https://youtu.be/ZVZpggGXl08
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cannot precede the impact itself, B’s to-and-fro motion prior to the impact cannot be part of the 

“effect” in question. Instead, it indicates a cause other than the blow by A.  

Michotte (1946/1963) reports that there is no perceived launching with the set-up in 

Experiment 21: B's movements “seemed entirely independent of the movement performed by A” 

(p. 74).  In comparison with Experiment 1, it is evident that B’s to-and-fro motion prior to the 

collision eliminates the impression of launching. In view of the fact that the cause-and-effect 

sequences in the two experiments are identical, if causation is indeed observable, launching 

should be perceived equally in both experiments. The fact that it is not indicates that, even in the 

case of compelling causal perception, causality cannot be present in the sensory input. To 

conclude from the perception of causality in the launching phenomenon that causality is 

“observable” is to mistake the output of the perceptual system for its input. Crucially, that causal 

perception is truly a perceptual phenomenon is entirely consistent with our claim that causation 

is not observable, and we fully acknowledge that researchers of causal perception do not take the 

phenomenon as evidence for the observability of causation (e.g., Scholl & Tremoulet, 2000). Our 

present point is that this phenomenon necessitates explanation. Specifically, how is it that, in the 

case of causal perception, our perceptual system takes non-causal sensory input and reliably 

generates the compelling visual representation of “launching” in cases like Experiment 1 but not 

in cases like Experiment 21? 
 

Perspective 2: If causation is not a mental construct, perceived causality should not change 

across inertial reference frames (Cheng & Lu, 2017) 

We next consider the compelling perception of causality in ball collision episodes 

(Michotte’s, 1946/1963) from the perspective of the postulate of relativity in Newtonian physics.  

Consider the perception of causality in each of three horizontal motion episodes involving the 

collision of two balls.  Assume an idealized world in which there is no friction and no background 

scene to convey the position of the balls relative to the background.  The issue concerns which 

ball is perceived as the cause of what happens in each of the episodes in Figure 2: 
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Figure 2. Three views of the same collision event from three different inertial reference frames 

(see a video of the episodes at https://www.youtube.com/watch?v=H7ukG3OAT7I). 
 

Episode 1: Ball B is stationary at the center of the screen. Ball A appears from the left, moves 

toward Ball B with constant velocity v and collides with it. Ball A stops and B moves to the right 

with velocity v. 
  

Episode 2: Now, Ball A instead is stationary at the center. Ball B appears from the right, moves 

toward A with velocity −v and collides with it. (The negative sign indicates movement from right 

to left.) B stops as A moves to the left with velocity v. 
 

Episode 3: Balls A and B simultaneously enter from the left and from the right, respectively, at 

half the speed (v/2) as in the other two episodes. They collide, and move away in opposite 

directions at the same speed after their collision as before.  
 

In accordance with Michotte's (1946/1963) findings, virtually everyone perceives that in 

Episode 1 Ball A "causes" Ball B to move. The reverse holds in Episode 2: here Ball B "causes" 

Ball A to move. In Episode 3, the perception is that each ball causes the other to rebound after 

their collision. If the balls were real objects rather than cartoons, the preceding perceptions of 

causality would hold just the same.  

Although we perceive the three collision episodes as involving different configurations of 

causal roles, these episodes can depict the exact same event viewed from different inertial 

reference frames. An inertial reference frame is a system of coordinates that moves at a constant 

https://www.youtube.com/watch?v=H7ukG3OAT7I


Revisiting Hume 

 11 

velocity. A postulate in Newtonian physics is that laws of motion are invariant across inertial 

reference frames (Newton, 1687/1713/1726/1999). 

To see the three episodes as views of an identical physical event from three inertial 

reference frames, imagine watching the top episode from clouds moving respectively with 

constant velocity v and v/2, one cloud at a time. The two clouds represent different inertial 

reference frames. Watching the top episode from each of these two “clouds” transforms that 

episode respectively into the middle and bottom episode. The exact same event necessarily 

involves the same causation.  Shifting the viewpoint across three inertial frames does not change 

the event, because the laws of motion are invariant across such frames. But the two balls’ causal 

roles are perceived to differ across episodes.  If causation is observable, why would an identical 

event, involving identical causation, give rise to three compellingly different causal perceptions?  

Our three episodes illustrate that, counterintuitively, even in this compelling case of 

colliding balls, our perception of causation is not a direct reflection of nature. Nature does not 

come defined by variables or concepts. The concept of an inertial reference frame, for example, 

is a human construct. Perceived or conceived causation is a matter of how our cognitive 

processes “choose” to represent reality, in everyday thinking and in science. Whereas intuitive 

constructs describe these episodes as different events involving different causal roles, Newtonian 

constructs treat the three episodes as equivalent. Newton’s choice yields greater causal 

invariance, covering a broader explanatory scope (Woodward, 2000). Our example illustrates 

that the reasoner’s goal cannot be to "accurately" represent reality. It is instead to construct more 

useful, more predictive representations of reality, so that experience is not useless. 

 

Perspective 3: If an activated cone does not know which combination of photons activated 

it, can “launching” be present in the sensory input to our visual system? (e.g., Hofer, Singer, 

and Williams, 2005; Mitchell & Rushton, 1971) 
 

From a cognitive neuroscience perspective, causal relations cannot possibly be in the 

input to our cognitive system. Consider the nature of the input to our receptors, the ultimate and 

sole source of information about the material world (ourselves included in the material world).  

Here we review findings on human vision, because sensory input to the visual system is precisely 

specifiable. The perception of color is perhaps even more compelling than that of causal 

relations. But the confusion between the input and the output of a system may be more tempting 
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for causal induction, as it may be easier to see that color is in our head, not in the 

electromagnetic waves.  

It is common knowledge that daytime vision in normal human vision is based on the 

activation of three types of cones, photoreceptors sensitive to electromagnetic waves in the light 

spectrum. We denote them S, M, and L cones to indicate their respective maximum sensitivity to 

short, medium, and long wavelengths of light. 

Each cone type is sensitive to a range of wavelengths, with overlap between their 

distributions of relative sensitivities (see Figure 3). The overlap in relative sensitivity between 

the M and L cones is especially large. For example, for rays of 550-nm light, M and L cones are 

both likely to be activated. Thus, although the cone types are activated with different 

probabilities by light of different wavelengths, the overlaps imply that when a cone is activated, 

it would not “know” which wavelength of light activated it.   

As vision researchers Mitchell and Rushton (1971, p. 1041) note in their “Principle of 

Univariance”, an activated cone does not know which combinations of photons activated it – it 

only “knows” that it is activated and the intensity of its activation. The distal stimulus is under-

determined by the proximal stimulus: An infinite set of wavelength-intensity combinations of 

electromagnetic waves can elicit an identical response from a cone or a single type of cone. 

Stepping back from color perception to causal perception, in view of what an activated cone can 

only know, and thus what it cannot know, it should be clear that none of the activated cones can 

know that some object is “launching” another object.    
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Figure 3. Distributions of the relative sensitivity of S, M, and L cones to electromagnetic waves 

with wavelengths in the range that give rise to human color vision. Peak sensitivities are 

normalized to 1.0. 
 

Findings reported by Hofer et al. (2005) illustrate the remarkable vagueness of the color 

information encoded in each cone.  When human subjects viewed a minuscule spot of 550-nm 

light that activates a single cone, so that S cones are unlikely to be involved, each subject gave a 

wide range of verbal responses across trials indicating their perception of color for the same 550-

nm light (see Figure 4 from Hofer et al. below). The most common overall response is “white”, 

in addition to at least 5 other color categories for each subject. Even though S cones are very 

unlikely to be involved in the detection, “blue” was a quite frequent response for 3 of the 5 

subjects. If color is not represented in any cone, even less so are other features of our conception 

of the world; features such as causation, object-hood, and 3-dimensionality are not represented in 

any of the photoreceptors that inform our daytime vision. There is no homunculus downstream, 

only more neurons communicating with each other via synapses. Thus, from what is known 

about the nature of the sensory input, causality is not in the input to our cognitive system from 

the external world. 
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Figure 4. The color sensations reported by subjects when viewing a small spot of 550-nm light. 

At this wavelength only L and M cones participate in detection. Shown are the percentages of 

white and colored responses that were placed in each response category, interpolated at 50% 

frequency of seeing. From Hofer et al. 2005. 

 

Perspective 4: People are unaware of the causes of internal psychological or physical 

outcomes when multiple plausible causes were present (e.g., Brasil-Neto et al., 1992; Nisbett 

& Wilson, 1977) 
 

Inducing the causes of internal events is not different from inducing those of external 

events.  Just as causation in external events is inherently not in the input to the processes that 

give rise to the causal understandings of those events, neither is causation in internal events in 

the input to the analogous processes. Recall that scratching a mosquito-bite involves 

proprioceptive input from the fingers, hand, and arm, together with visual input on the cones, 

enabling the integration across the inputs. No sensory receptor involved in the judgment “knows” 

the causal perception that the scratching relieved the itch.   

If causation in internal events were present in the input, one would expect people to be 

aware of the causes that bring about their voluntary actions, not only in situations when there is 

one single plausible cause of an action present, but also when multiple plausible causes are 

present. To provide experimental evidence that causation in internal events is not in the input, we 

review some findings concerning multiple-cause type situations. In this critical test case, people 

are remarkably clueless about the causes of their voluntary actions.  

In an experiment on the effect of transcranial magnetic stimulation on motor response, 

normal adult participants were asked to extend the index finger on either their left or right hand 
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at will (Brasil-Neto et al., 1992). They were asked to choose which hand to move upon hearing a 

go-signal. When magnetic stimulation was delivered to the motor area, participants more often 

moved the hand contralateral to the site stimulated. This response bias was independent of 

handedness and of the cerebral hemisphere stimulated. The researchers note that although the 

influence of magnetic stimulation on hand choice was clear and predictable, no participant was 

aware of the influence. They conclude (p. 964), “It is possible to influence endogenous processes 

of movement preparation externally without disrupting the conscious perception of volition.”  

From their finding, we see that when there were two plausible causes of finger movement – 

magnetic stimulation and participants’ own choice of hand – participants were unaware of the 

actual cause of their “willed” finger movement. 

Similarly, in Nisbett and Wilson’s (1977) classic article, “Telling more than we can 

know”, they review numerous striking findings showing that people not only cannot articulate 

the causes of their behaviors and actions, but even when the true cause is revealed, people refuse 

to believe that such can be the case. For example, in a study conducted in a commercial 

establishment under the guise of a consumer survey, passersby were invited to appraise articles 

of clothing and choose one. In one condition, subjects saw four identical pairs of nylon stockings 

in an array and were asked to evaluate their quality. Once they announced a choice, they were 

asked to explain why they had chosen what they chose. There was a pronounced position effect, 

such that the rightmost item in the array was heavily over chosen. The right-most stockings were 

chosen almost four times as often as the left-most. When asked about the reasons for their 

choice, no subject ever mentioned the position of the stocking in the array. Even when asked 

directly whether they chose the article because of its right-most position in the array, “virtually 

all subjects denied it, usually with a worried glance at the interviewer suggesting that they felt 

either that they had misunderstood the question or were dealing with a madman” (p. 244).  

These examples illustrate that people can be unaware of the causes of their decisions, in 

simple choices in everyday life or in the laboratory. To our knowledge, there has not been 

evidence showing that when multiple plausible causes were present, the internal causal relation 

was “observable”. 

The four diverse perspectives just reviewed converge in showing that causal 

understandings are our representations of reality, rather than “direct reflections” of reality. If 

causal understandings are not directly given by reality, then how and why do we humans develop 
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the causal representations that we do? We do so because we need generalizable/useable causal 

knowledge, and our causal-induction process aims at formulating such knowledge. The 

representational nature of causal knowledge implies that the search for such knowledge occurs in 

an infinite space of possible causal representations (recall the analogous issue in the perception 

of a cube). In the following, we address two questions arising from that challenge: 1) how is it 

possible to reduce the search space to avoid paralysis, and 2) how is it possible to tease apart a 

target candidate cause’s influence from that due to potentially unobserved background 

causes? The rest of our chapter examines an answer to these questions in terms of a constraint on 

causal induction, which we term causal invariance (Cheng & Lu, 2017; Woodward, 2000). 

 

Causal invariance as a rational constraint on causal induction 

In the following, we explain how analytic knowledge of causal invariance plays an 

essential role in inducing useable causal representations, “analytic” in the sense that the 

knowledge logically follows from the meaning of the concept, namely, the sameness of causal 

influence across contexts, and “useable” in the sense that the acquired knowledge holds when it 

is applied. We do so by comparing causal induction that is constrained by causal invariance with 

an associative foil of causal induction that is not so constrained. In an extended example, we 

show that the former yields useable causal representations and that the latter does not. Because 

this difference occurs for causal representations involving discrete outcomes, and is simple to 

show for binary outcomes (e.g., a light is either on or off), for which “additivity” is distinct from 

“invariance” as we explain later, the rest of our chapter concerns binary outcomes. 

Terminology and background information 

We first clarify some terminology and present some background information. In the 

previous section, we argued that causal relations are not present in the input to the cognitive 

system. Given that people do “know” causal relations, such knowledge of causality must 

therefore emerge somewhere along the pathway from the sensory input to its ultimate output.  

Under the modularity assumption in cognitive science (Marr, 1982), we designate the causal 

induction module, the focus of this chapter, to be the segment deep in the computational pathway 

that begins with an input layer, the layer closest to the causal output that is not yet causal.  This 

module takes as input heterogenous noncausal information encompassing event frequencies and 
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variable intensities and generates as its output causal representations and judgments about them. 

The goal of the module is to induce useable causal representations. 

We assume that, for the module, a causal representation consists of a cause with one or 

more component factors, an outcome, and the causal relation between the cause and the outcome. 

A cause (e.g., stormy weather) influences an outcome occurring in an entity (e.g., an airplane’s 

safe landing). Causal influence can be generative (e.g., increasing the probability of a safe 

landing) or preventive (reducing that probability). Causal relations are asymmetric in that a cause 

brings about its outcomes, but an outcome does not necessarily bring about its causes. The 

temporal order of causal relata is asymmetric in that causes precede, or, in some cases, occur 

simultaneously with the outcomes they bring about (e.g., a wall’s blocking of the sun causing the 

occurrence of a shadow on the ground), but outcomes never precede their causes.  

The process of causal induction does its work in situations where available domain-

specific causal knowledge does not favor whether or not the candidate is indeed a cause of the 

outcome (i.e., the input is noncausal in that sense), so that the resulting causal judgment 

regarding that relation is new knowledge. To be sure, causal knowledge can be transmitted from 

one reasoner to another (e.g., via verbal communication) after that knowledge has already been 

induced. However, causal knowledge is ultimately induced based on some individual’s 

experience, through observations of particular events involving the states of candidate causes and 

of an outcome. (For counterexamples, see Garcia & Koelling, 1966, for evidence of causal 

knowledge that is not acquired due to individuals’ experience, but via the process of evolution 

based on species’ experience.)  

We take the view that causation is represented as taking place in individual entities (token 

causation). But, because causation is “unobservable”, no judgment can be made regarding what 

caused an outcome based on the state of the candidate cause and of the outcome in an individual 

entity.  Causal induction therefore concerns causes and outcomes that are categories (type 

causation). They are categories in the sense that each is characterized by one or more properties 

that are common across multiple particular cause and outcome events. These categories are 

diverse, reflecting reasoners’ concerns: They might represent some external event (e.g., rainy 

weather), some overt action (e.g., a person taking ibuprofen), some enduring state of an entity 

(e.g., oxygen being present on the surface of the Earth), or an entity’s having or not having some 
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property (e.g., a person having or not having a headache), or some other kind of event. In other 

words, type causal judgments are inferences about relations between cause- and effect-categories 

based on observations of sets of events across time in which instances (tokens) of cause-

categories variously present or absent in sets of entities are, with various probabilities, associated 

with instances (tokens) of an outcome category occurring in those entities (see Woodward, 2003, 

for a discussion of the relation between type and token causation; see Stephan & Waldman, 

2018, this volume; and Stephan, Mayrhoer, & Waldman, 2020, for discussion of how reasoners 

can apply their generic, type-level, causal knowledge about causal strength to assess token or 

singular causation). 

Prerequisites for evaluating the influence of a candidate cause on an outcome 

No judgment about the influence of a candidate cause on a target outcome can be made 

based solely on what we term cause-present information – that is, information on the relative 

frequency with which the outcome occurs in multiple entities in which the candidate cause is 

present. This is so because causation is unobservable. The outcome could have occurred due to 

background causes, various other (known and unknown) causes of the outcome present in the 

context. The influence of the candidate cause therefore needs to be teased apart from that due to 

the background causes. Doing so requires an estimate of the probability of the outcome due to 

background causes. 

The influence due to background causes in the cause-present events can be estimated, 

counterfactually, by the relative frequency of the outcome in control events, those in the same 

causal context— that is, with the same background causes present— but lacking the candidate 

cause (i.e., cause-absent events). In other words, to infer the relation between a candidate cause 

and an outcome, a reasoner relies on observation of two relative frequencies: the relative 

frequency with which an outcome occurs in cause-present events and that in control events. 

Situations in which background causes are held constant – where there is “no confounding” – are 

the only ones that license causal induction based on contrasting the probabilities of the outcome 

in the cause-present and cause-absent events (Cheng, 1997). The probability of the outcome in 

control events, due to satisfaction of the “no confounding” prerequisite, provides an estimate of 

the probability of the outcome in cause-present events (assuming that sample sizes are 

sufficiently large). With that estimate, it becomes possible for a reasoner to decompose the 
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occurrence of the outcome in the cause-present events into an estimate of the proportion brought 

about by the candidate cause and the proportion brought about by the background causes, with a 

potential overlap between the two subsets of events. Given that causation is never observable, 

decomposition is essential to causal induction. 

In the following, we will go through an example where a medication taken by human 

patients constitutes the candidate cause of headache, the target binary outcome. We partition all 

causes of headache into the candidate cause and a composite of all other (known and unknown) 

causes in the context (i.e., the background causes), which may affect the occurrence of headache  

independently of the medication or interacting with the medication. To use the headache 

example, the composite of background causes might include stress, dehydration, or sleep 

deprivation. 

Because causes and effects are categories, causal induction involves hypothesizing and 

evaluating representations of a candidate cause, a process that may be parallel to the process 

involving judgments about causal structure and causal strength (Kemp, Goodman, & 

Tenenbaum, 2010; Lien & Cheng, 2000; Marsh & Ahn, 2009; Waldmann & Hagmayer, 2006; 

Waldmann, Meder, Sydow, & Hagmeyer, 2010). This is an important aspect of causal induction 

which we do not address in the present chapter.  

Estimates of causal strength depend on the assumed decomposition function  

This process of decomposing the probability of a binary outcome into contributions by its 

various causes to estimate the causal strength of the candidate can be formally specified using a 

decomposition function. Importantly, given observations of the same event frequencies, different 

decomposition functions yield different estimates of a candidate’s causal strength. This 

divergence between commonly considered decomposition functions in the psychological 

literature does not pertain to continuous outcomes (e.g., a light can have varying degrees of 

brightness), because the dominant decomposition function, additivity, is the causal-invariance 

function for continuous outcomes.3 In the following, we focus on causal events featuring a binary 

 
3 Different outcome-variable types (e.g., binary, continuous, vectors, waves) have different 

causal-invariance functions, depending on how superposition of causal influences (i.e., 

independent influences) is normatively expressed in mathematical form. Vector addition, for 

example, is the causal-invariance function for vectors. 
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outcome in order to contrast two decomposition functions: 1) the causal invariance 

decomposition function, and 2) an associative foil that we label the additive decomposition 

function. Empirical evidence comparing the two decomposition functions shows that the former 

but not the latter function is descriptive of human causal induction (e.g., Buehner, Cheng, & 

Clifford, 2003; Cheng, 1997; Liljeholm & Cheng, 2007; Lu, Yuille, Liljeholm, Cheng, & 

Holyoak, 2008).  

Our goal in contrasting these two decomposition functions is to demonstrate that analytic 

knowledge of causal invariance, in the form of the causal-invariance decomposition function 

applied to a candidate cause and the composite of other causes in the context, is a rational 

constraint on causal induction. We show that use of only the causal-invariance decomposition 

function during learning will result in a logically consistent indication of whether the target 

causal relation indeed generalizes to other contexts, judging by the criterion of symmetry: a 

causal relation that generalizes from a learning context to an application context should also 

generalize in the reverse direction, from the application context back to the original learning 

context. 

Please note that the extended example to follow makes use of headache as a binary 

outcome. We acknowledge that headaches do, indeed, vary in their intensity and are more 

realistically understood as a continuous outcome. Our reason for using headache in our example 

is simply that their presence and absence is easy to represent in visual diagrams. For more 

realistic examples of a binary outcome, consider outcomes such as a woman being pregnant or 

not, a reader subscribing to a magazine or not, a car’s motor being on or off, an organism being 

alive or dead, or a protestor infected with COVID-19 or not.  

Let us consider the following situation, which we will call Context 1: the candidate cause 

is the medication M taken by human patients and the outcome is these patients having a 

headache. Patients are randomly assigned to two groups: one that received medication M, 

another that does not. No relevant causal knowledge about individual patients is available. Here, 

it is important to note that individual patients are the meaningful units within which the 

medication exerts its causal influence.  
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Figure 5. Occurrences of headaches in patients who did not receive the medication (top) and in 

patients who did receive the medication (bottom) in Context 1. 

 

Figure 5 depicts the occurrence of headaches in patients who did not (top panel) and who 

did receive the medication (bottom panel) in Context 1. As the figure shows, when patients each 

take the medication (i.e., in cause-present events), 30/36 of them develop a headache, and when 

patients do not take the medication (i.e., in control events), 12/36 of them develop a headache. 

(We leave the fractions unreduced so that they readily correspond to the relative frequencies in 

the figures.) These relative frequencies of headache are best understood on a ratio scale – each 

expresses the proportion of individual patients who has a headache relative to the entire group of 

patients in each kind of event. Assume that there are no preventive causes. When considered in 

an experimental setting, each of these cause-present and control events might be considered an 

experimental trial.  

Let us consider the causal strengths inferred by the two decomposition functions. An 

additive decomposition function represents the probability of patients having a headache (H) 

after having taken the medication M in the cause-present events (P(H = 1|M = 1, B = 1) = 30/36) 

as the sum of (1) an estimate of the probability across patients that headache occurs attributable 



Revisiting Hume 

 22 

to4 the composite of background causes B (pB = 12/36) and (2) an estimate of the probability that 

taking the medication brings about a headache across patients (𝑝𝑀𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒
 = 18/36): 

 

 𝑃(𝐻 = 1 |𝑀 = 1, 𝐵 =  1)  =  𝑝𝐵 + 𝒑𝑴𝑨𝒅𝒅𝒊𝒕𝒊𝒗𝒆
 (1) 

30

36
 =

12

36
+

𝟏𝟖

𝟑𝟔
 

 

The additive decomposition function instantiates an exertion of causal strength where each 

patient is only susceptible to developing a headache from either background causes or the 

medication, but not both. To put the point differently, the additive decomposition function 

implies that in events where the background causes exert their causal strength, the medication 

withholds exerting its causal strength, and in events where the medication exerts its causal 

strength, the background causes withhold exerting their casual strength. Such an absurd state of 

affairs would involve the medication and the background causes knowing in which patients each 

other causes headaches and having the ability to control when they themselves do so. In other 

words, the medication and the background causes are not acting independently.  

On the other hand, a causal invariance decomposition function represents the probability 

of this same cause-present outcome (P(H = 1|M = 1, C = 1) = 30/36) as specified in Eq. 2: as a 

superposition of the independent influences of the medication and the background. 𝒑𝑴𝑰𝒏𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆
 in 

Eq. 2 is the causal power of the medication.  Causal power is a theoretical, unobservable 

probability which represents the capacity for an instance of a cause in an entity to bring about an 

instance of an outcome in that entity (Cartwright, 1989; Cheng, 1997). In the absence of relevant 

causal knowledge about the individual entities exposed to the candidate cause, the induction of 

causal power of the candidate based on observations of the state of the cause and of the outcome 

in a set of entities is constrained by the default assumption that the power of the candidate is 

independently and identically distributed (iid) across those entities (e.g., Casella & Berger, 

2001).  Each particular instantiation of a given cause in an entity is assumed to independently 

exert the same causal power to bring about an instantiation of its outcome across all entities in 

 
4 We distinguish the interpretation of pB mentioned in the text from an alternative interpretation 

in which it is the probability with which background causes bring about headache. The latter is 

not estimable because of the inherent lack of information about the probability of the occurrence 

of unobserved and unknown background causes in the context.  
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the set exposed to the same candidate cause.  There is no reason to assume otherwise in the 

absence of relevant causal knowledge.  The independent exertion of causal power across 

individual patients is captured in the intuition that the medication in one patient does not know 

what the medication in another patient does. 

The terms on the right-hand side of Eq. 2 are respectively: (1) an estimate of the 

probability that headache occurs across patients attributable to background causes (pB = 12/36), 

(2) an estimate of the probability that taking the medication brings about a headache across 

patients (𝑝𝑀𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
= 27/36), and (3) the counterfactual probability that headache would be 

produced by taking the medication if it had not already occurred due to the background causes 

(𝑝𝑀𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒,𝐵 = 9/36), estimated by the product of the preceding two terms: 

 

 𝑃(𝐻 = 1 |𝑀 = 1, 𝐵 = 1)  =   𝑝𝐵 + 𝒑𝑴𝑰𝒏𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆
 − 𝑝𝑀𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒,𝐵 (2) 

30

36
=

12

36
+

𝟐𝟕

𝟑𝟔
−

9

36
 

 

The causal invariance decomposition function arrives at 𝑝𝑀𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
 = 27/36 as the causal power 

of taking medication. Under this interpretation, every patient taking the medication in this 

context is just as susceptible as any other patient to develop headache from background causes, 

and, independently, likewise from taking the medication. This means that there are 9/36 cases in 

this context where patients’ experiencing relief from headache is causally overdetermined. Those 

are the cases in which the background causes and taking medication are independently sufficient 

to cause headache such that, counterfactually, the absence of either one would still have resulted 

in headache. Those cases are represented by the 𝑝𝑀𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒,𝐵 term (which is subtracted in 

accordance with probability theory to avoid counting those cases twice). 

It should be clear that the additive decomposition’s estimates of causal strength (i.e., of 

background causes and of taking medication on developing headaches) violate the iid condition 

across patients. Whereas we refer to the estimate that instantiates the iid assumption as causal 

power, we use causal strength as the theoretically neutral term when an estimate does not 

necessarily instantiate the iid assumption. We therefore refer to 𝑝𝑀𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒
 as a causal strength 

estimate.  
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Our present aim is to explain why this assumption is a rational constraint on inducing 

useable causal representation. To gain an intuitive sense of the superposition, consider: What 

causal strength of medicine M would most likely result in the outcome depicted in the 

experimental group in Figure 5 (the bottom panel) —assuming that M and the background do not 

interact —if patients in the control group in that figure (the top panel) had received medicine M?  

We hope it is intuitive that the answer is 3/4, the maximum-likelihood estimate of medicine M 

producing headache (Griffiths & Tenenbaum, 2005) under the assumptions of the causal power 

theory (Cheng, 1997). 

Are causal strengths inferred without the iid assumption generalizable? 

Thus, we see how different decomposition functions arrive at different estimates of 

causal strengths. To illustrate that causal strengths that violate the iid assumption would not be 

usable causal knowledge, we explore generalization to a different causal context, which we will 

call Context 2. Context 2 is the application context to which we apply the causal strengths 

inferred in Context 1, the learning context. We continue with the same candidate cause (i.e., 

taking medication) and the same target outcome (i.e., experiencing headache) as Context 1. We 

show that, unlike 𝑝𝑀𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
, 𝑝𝑀𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒

 does not satisfy even the minimal generalization 

requirement: specifically, after 𝑝𝑀𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒
 successfully generalizes to Context 2, it fails to 

generalize from Context 2 back to Context 1, the original context in which it was inferred.  To 

illustrate that 𝑝𝑀𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒
 fails to satisfy this minimal requirement, we chose Context 2 to be a 

situation in which all associative and causal models agree on the predicted outcome from 

introducing a cause with any given strength. In Context 2, 0/36 patients have a headache without 

any medication (see Figure 6), indicating that there are no background causes, so that any 

candidate cause introduced is the only cause present. As before, assume that there are no 

preventive causes.  

An integration function uses estimates of causal influence induced from prior experience 

(e.g., from observing event frequencies in Context 1) to predict frequencies of some outcome to a 

new context (e.g., the occurrence of headache in patients having taken the medication in Context 

2). Importantly, an integration function generalizes an estimate of causal strength to a novel 

context, in which we have no information yet on whether and how the background causes in that 

context interact with the target cause. Without any such information, the only reasonable default 
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assumption is that the target cause brings about the outcome of interest with the same capacity on 

each event, and this assumption is captured by the iid nature of causal power. In other words, an 

integration function that instantiates this iid nature of causal power is the only justifiable 

integration function to apply as a default. An integration function assuming iid specifies the 

inverse operation as the causal-invariance decomposition function. We use this function below to 

generate predictions of headache occurrence in Context 2, for both 𝑝𝑀𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
and 𝑝𝑀𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒

. 

Because medication M is the only cause in Context 2, no superposition is involved. The 

applications of this integration function we illustrate below are therefore trivial, and the resulting 

predictions do not differ from those resulting from applying an additive integration function.   

Recall that the causal strength estimate from the additive decomposition function in 

Context 1 was 18/36 and that the causal power estimate from the causal invariance 

decomposition function was 27/36. Also recall that 0/36 patients develop a headache without the 

medication in Context 2. Incorporating this outcome frequency with the causal strength 

estimated by the additive decomposition function in Context 1 yields the prediction that 18/36 

patients will develop a headache after taking the medication: 

 

 𝑝𝐵 + 𝑝𝑀𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒
− 𝑝𝑀𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒,𝐵  =  𝑷(𝑯 = 𝟏 |𝑴 = 𝟏, 𝑩 = 𝟏)𝑨𝒅𝒅𝒊𝒕𝒊𝒗𝒆 (3) 

0

36
+

18

36
−

0

36
=

𝟏𝟖

𝟑𝟔
  

 

And doing the same but instead using the causal power estimated by the causal-invariance 

decomposition function in Context 2 yields the prediction that 27/36 patients will develop a 

headache after taking the medication: 

 

 𝑝𝐵 + 𝑝𝑀𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
− 𝑝𝑀𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒,𝐵  =  𝑷(𝑯 = 𝟏 |𝑴 = 𝟏 , 𝑩 = 𝟏)𝑰𝒏𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆 (4) 

0

36
+

27

36
−

0

36
=

𝟐𝟕

𝟑𝟔
 

 

We now compare how the predictions generated using the two causal strength estimates 

generalize the respective strengths back to Context 1, the learning context. 

Across the causal events to which the same causal representation applies, an agent may 

use their observations of some causal events to induce that causal representation, or they may 
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apply their causal representation to either explain or predict outcome occurrences in other causal 

events. We refer to the cognitive processes underlying the former phenomenon as causal 

induction and those underlying the latter phenomenon as causal reasoning. While both processes 

may operate in a given event, for the purpose of exposition it is worthwhile to distinguish 

between learning contexts where an agent engages in causal induction and application contexts 

where an agent engages in causal reasoning.  

 

 

 

Figure 6. Occurrence of headaches in patients who did not receive the medication in Context 2 

(top) and occurrence of headaches in patients receiving the medication in this context as 

predicted, respectively, by the causal power estimated in Context 1 using the causal-invariance 

decomposition function (middle) and by the causal strength estimated in Context 1 using the 

additive decomposition function (bottom). 

Even though the distinction between the learning and application contexts is natural with 

respect to a reasoner’s cognitive history, this same distinction is completely incidental with 

respect to rationally generated causal representations. Specifically, if the same causal 

representation holds across two causal contexts, which of those contexts was a learning context 
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and which was an application context for a particular reasoner should make no difference. 

Returning to our example above, while Context 1 served as a learning context and Context 2 

served as an application for a hypothetical reasoner, reversing their roles (i.e., so that Context 2 

serves as a learning context and Context 1 serves as an application context) should yield 

consistent inferences. In other words, causal induction should accommodate symmetry between 

learning and application contexts. It is logically inconsistent for a causal strength to be both “the 

same” and “not the same” across two contexts: if a cause operates the same way in an application 

context as in its learning context, its causal strength should remain the same across the two 

contexts, regardless of that context’s epistemic relation to the reasoner. In the following, we 

show that causal induction assuming causal invariance as the decomposition function does 

accommodate this symmetry, but that assuming the additivity decomposition function or any 

other non-causal invariance decomposition function fails to accommodate this symmetry. Let us 

now flip the learning and application contexts of our previous example, treating Context 2 as a 

learning context and Context 1 as an application context.   

 Figure 7 depicts the results of flipping the learning and application contexts for the 

additive and causal invariance functions. The causal strength estimated by the additive 

decomposition in Context 2, 𝑝𝑀𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒
= 18/36, makes an incorrect prediction that 24/36 of 

patients in Context 1 will have headache after having taken the medication: 

 

𝑝𝐵 + 𝑝𝑀𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒
− 𝑝𝑀𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒,𝐵 = 𝑷(𝑯 = 𝟏 |𝑴 = 𝟏, 𝑩 = 𝟏)𝑨𝒅𝒅𝒊𝒕𝒊𝒗𝒆  

12

36
+

18

36
−

6

36
=

𝟐𝟒

𝟑𝟔
 

 

And as should be obvious, because of the inverse relation between decomposition and 

integration, the causal power estimated by the causal invariance decomposition function in 

Context 2, 𝑝𝑀𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
= 27/36, makes the correct prediction that 30/36 of patients in Context 1 

will have headache after having taken the medication: 

 

 𝑝𝐵 + 𝑝𝑀𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
− 𝑝𝑀𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒,𝐵 =  𝑷(𝑯 = 𝟏 |𝑴 = 𝟏, 𝑩 = 𝟏)𝑰𝒏𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆 

12

36
+

27

36
−

9

36
=

𝟑𝟎

𝟑𝟔
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Figure 7. Occurrence of headaches in patients who did not receive the medication in Context 1 

(top left) and occurrence of headaches in patients receiving the medication in this context as 

predicted, respectively, by the causal power estimated using the causal-invariance decomposition 

function (middle left) and by the causal strength estimated using the additive decomposition 

function (bottom left) based on the event frequencies in Context 2 shown in Figure 6 and 

duplicated here for easier visual comparison (top right).  
 

Here, we see that generalizing from Context 2 to Context 1 using the causal invariance 

decomposition function, but not the additive decomposition function, accommodates the 

symmetry between learning and application contexts. Specifically, the predicted occurrence of 

headaches in patients taking the medication in Context 1 using the causal power estimated by the 

causal-invariance decomposition function in Context 2, but not that estimated by the additive 

decomposition function, yields the actual observed frequency in Context 1 (Figure 5). This 

difference in the satisfaction of the symmetry requirement follows from 1) the inverse relation 

between a decomposition function and an integration function, and 2) the inherent assumption 

when a reasoner applies causal knowledge to a new context where potentially different 

unobserved or unknown causes occur: the causal relations being generalized operate the same 
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way across the learning and application contexts. That inherent assumption renders the causal-

invariance function the only rational integration function to apply in causal reasoning. As an 

example, we have shown that the additive decomposition function fails to be logically consistent 

across transpositions of the arbitrary “learning” and “application” context labels for inducing 

causal relations involving a binary outcome, illustrating that the causal-invariance function is the 

only rational decomposition function to apply in causal induction.   

A careful reader may notice that the additive decomposition function that we have 

discussed thus far is the one that underlies a linear regression model. Considering that our 

example features a binary outcome, such a reader might protest that it is inappropriate to use 

linear regression to estimate binary outcomes (but see Gomilla, 2020 for advocation for this very 

practice) and question the relevance of problematizing the additive function for such situations. 

In the following, we show that the inconsistency described above is also characteristic of the 

logistic model, whose use in predicting binary outcomes is much more conventional. By 

extending our analysis to the logistic model, we argue that this logical inconsistency is inherent 

to any decomposition function that violates the iid assumption (i.e., any non-causal-invariance 

function). 

 

Is logical inconsistency a problem for generalized linear models? 

The logical inconsistency across contexts is true not only of the additive decomposition 

function, for which this problem may be obvious.  Here we illustrate the general problem with a 

concrete example where it is easy to see the problem for the logistic function, a generalized 

linear function: 

 𝑓(𝑧) =
𝑒𝑧

1+𝑒𝑧 , (5) 

 

where z may be interpreted as the weighted sum of the predictor variables (in this interpretation 

the causal variables), and f (z) is the probability of the binary outcome in question. The logistic 

function (Eq. 5) is assumed by “normative” associative models such as logistic regression, a 

widely used statistical method in medical and business research, where binary outcomes (e.g., a 

tumor is either malignant or benign, a bone is either fractured or intact) are common. 
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 One interpretation of the logistic model is that: 1) the predictor variables exert their 

independent influences, not directly on the binary outcome, but on a latent mediating variable s 

—a continuous variable with values on an interval or ratio scale— so that s is a weighted sum of 

the predictor variables, 2) the probability f(z) in Eq. 5 can be conceptualized as being due to 

noise n being added to the latent variable s to produce a decision y representing the binary 

outcome; n has a logistic distribution (i.e., density function) with a mean of 0 and a scale 

parameter equal to 1, and 3) when s + n is greater than a threshold—0 in this case, the binary 

outcome occurs, otherwise the outcome does not occur; that is: 

 𝑦 = {
1      𝑠 + 𝑛 > 0  
 0     else.              

 

  We do not dispute that hypotheses with a mediating variable should be considered. 

However, the principle of parsimony would be violated if the continuous mediating variable is 

postulated as a default, bypassing consideration of a simpler hypothesis. In cases in which the 

simpler independent-influence hypothesis is in fact the better explanation, it would never be 

found. For this reason, the common usage of logistic regression as the standard statistical method 

for analyzing data with a binary outcome is likely to have contributed to the replicability crisis 

(Ioannidis, 2005; Open Science Collaboration, 2015).  

A shared mediating variable can strain credulity in some cases. Consider one of the 

binary outcomes introduced briefly earlier: Pregnancy. Pregnancy is likely to have dissociable, 

independent causes. Two such causes might include, 1) whether or not someone has received a 

medical procedure to improve their fertility and 2) whether or not someone lives in a country 

with a policy that limits child-rearing (e.g., China and its one-child policy). The mechanism by 

which someone having received a medical procedure to improve their fertility influences their 

chances of getting pregnant is biological and internal to their bodily function. On the other hand, 

the mechanism by which someone’s living in a country with a policy that limits child-rearing is 

social and external to their bodily function. A latent variable that elides the clear distinction 

between these two causal mechanisms seems implausible. To what would this latent variable 

refer?  
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It is our understanding that the simpler hypothesis, the independent direct causal-

influences hypothesis without the continuous mediating variable, is typically not in the repertoire 

of potential models to evaluate in popular statistical-analysis software (e.g., SPSS, R). The 

software user has no choice but to posit the more complex hypothesis, which implies foregoing 

deviation from independent direct causal influences as a criterion for hypothesis revision, instead 

treating independent influences on the continuous intervening variable as the aspiration (Bye, 

Chuang, & Cheng, under review). Beyond the logistic model’s relative lack of parsimony, it fails 

to estimate causal strengths that generalize across distinct contexts when the simpler hypothesis 

holds, as we now move on to show.  

  

To see the problem with the logistic function as a decomposition function for sets of 

events with a binary outcome, let us consider yet another context, which we will call Context 3, 

alongside the previously discussed Context 1 (see Figure 8). In Context 3, 6/36 patients develop 

a headache without receiving the medication, and 24/36 patients develop a headache after having 

taken the medication.  

 

 

Figure 8. Occurrences of headaches in patients who did not receive the medication in Context 1 

(top left) and Context 3. Occurrences of headaches in patients receiving the medication in 

Context 1 (bottom left) and in Context 3 (bottom right). 
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We constructed the outcome frequency for control events in Context 1 to be the 

complement of the outcome frequency for cause-present events in Context 3, and the outcome 

frequency for control events in Context 3 to be the complement of the outcome frequency for 

control events in Context 1. We use this complementary pattern as an obvious example to 

illustrate the general violation of the iid assumption by this model. In this model, the probability 

of a binary outcome is a logistic function of z, the weighted sum of the predictor variables, the 

causal variables in the case of our example: 

 

 𝑧 =  𝐵1 ∗ 𝑤𝐵1
+ 𝑀 ∗ 𝑤𝑀  

𝐵1 ∈ {0, 1} 

M  ∈ {0,1} 

(6) 

 

𝐵1 refers to Context 1, and M refers to the medication. Each are binary variables where a value of 

1 represents the presence of their referent, and a value of 0 represents its absence. 𝑤𝐵1
 and 𝑤𝑀  

represent the causal weights associated with the Context 1 background causes and the 

medication, respectively. 𝑤𝐵1
 is the same as 𝑝𝐵 from the additive decomposition function applied 

to the respective causal context. Decomposing using Eqs. 5 and 6, the logistic function, like the 

additive decomposition function, characterizes the medication as an invariant cause across 

Context 1 and 3, in that 𝑤𝑀  is constant across these contexts. It should be clear that this 

characterization is mistaken. For each of these contexts, consider: What causal strength of 

medicine M would most likely result in the outcome depicted in the experimental group in 

Figure 8 (the bottom panel) —assuming that M does not interact with the background in either 

context —if patients in the control group in that figure (the top panel) had received medicine M?  

The answers are not the same for the two contexts. They instead correspond to 𝑝𝑀𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
 in 

Context 1 and in Context 3. 

 

We will now explain the general divergence between the logistic decomposition function 

and the causal invariance decomposition function by examining the logistic function graphically, 

as shown in Figure 9. Each of the four pairs of light grey and dark grey points represents a 

different causal context. Here, we see that the four depicted causal contexts that are symmetric 

about z = 0 or f(z) = .5 (e.g., the two contexts represented by the two inner pairs of points or the 
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two contexts represented by the two outer pairs of points in the figure), 𝑤𝑀  will be identical 

across contexts, and the medication will be represented as an invariant cause. This explains the 

point made earlier: Context 1 and Context 3 in Figure 8 were constructed to be symmetric about z 

= 0 or f(z) = .5. (But note that Figure 9 does not illustrate Contexts 1 and 3.) 

 

Figure 9. 𝑤𝑀  according to the logistic decomposition function in various causal contexts. Each 

pair of cause-present and control events (light grey and dark grey points) represents a different 

causal context. 

Let us now shift attention to the whole logistic curve. Notice that each causal context in 

Figure 9 has the same ∆P (vertical dashed lines, purple in online version), that is, the difference 

in headache probability between cause-present events and the control events is held constant 

across contexts. In other words, P(H = 1|B = 1,M = 1) – the probability of headache observed in 

cause-present events – is equal to the sum of ∆P and P(H = 1|B = 1, M = 0) – the probability of 

headache observed in control events. Let us now focus on 𝑤𝑀  (horizontal dashed lines, green in 

online version) across contexts. Notice that, for causal events with the same ∆P, as the observed 

headache probability for control events (light grey points) approaches .5, 𝑤𝑀  decreases, and that 

as the observed headache probability for control events increases 

beyond .5, 𝑤𝑀  increases. This trend is shown in the left panel of Figure 10, which depicts causal 

strength estimate from the logistic decomposition function, 𝑤𝑀  (horizontal dashed lines in Figure 

9, green in online version), as a function of headache probability in control events (y-values of 

the grey dots in Figure 9), holding ∆P constant. For comparison, the right panel of Figure 10 

depicts the causal power estimate from the causal invariance decomposition function, 

𝑝𝑀𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
, as a function of headache probability in control events, holding ∆P constant. In 

sharp contrast to 𝑤𝑀 , 𝑝𝑀𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
 monotonically increases as the outcome probability in control 
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events increases. Intuitively, this is because increases in the outcome probability in control 

events, by counterfactual reasoning, imply a larger proportion of patients who would have been 

without headaches in the cause-present events who are caused to have headache, as expressed by 

𝑝𝑀𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
. 

 

 

 

Figure 10. Causal estimates (y-axes) as a function of outcome probability in control events    

(x-axes), holding constant ∆P = .2. 

 

In showing this divergence between the logistic decomposition function and the causal 

invariance decomposition function across Contexts 1 and 3, we have demonstrated that 

generalized linear models such as logistic regression are logically inconsistent with causal 

generalization, and do not yield usable causal knowledge. Further, in showing their 

incompatibility with causal invariance, we have shown that estimates of causal strength that are 

consistent with generalized linear models diverge from human causal induction (Buehner, et al., 

2003; Cheng, 1997; Liljeholm & Cheng, 2007; Lu et al., 2008). 

 

Through discussing event frequencies across Context 1, 2, and 3, we have argued for 

causal invariance as a rational constraint on the formulation of useable causal knowledge.  

Causal invariance assumes the identical and independent exertion of causal power within and 

across causal contexts. Specifically, we have shown 1) how different quantitative estimates of 

causal strengths assuming non-causal-invariance and causal-invariance decomposition functions 

respectively violate and accommodate this constraint, and 2) violation of the constraint leads to 

logical inconsistency, resulting in false alarms and misses in the hypothesis testing and 

hypothesis revision process. The violation is not specific to the cases we illustrated, but inherent 

to non-causal-invariance functions. 
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 In conclusion, revisiting Hume’s (1739/1987) radical insight that causation is 

“unobservable”, we see that it is strongly supported by findings and theoretical developments 

from diverse perspectives.  These perspectives — psychological science, physics, vision science, 

and neuroscience — converge in clarifying that causation is a representation of the empirical 

world by and in our mind. Grounded in a representation-dependent conception of reality, we see 

that the unobservability of causal relations demands an explanation of how useable causal 

knowledge is attainable in a search for such knowledge within an infinite space of possible 

representations. Our analysis shows that it is attainable only if a cognitive process adopts causal 

invariance as the default decomposition function, in other words, implements the assumption that 

there exist invariant causal relations in the world, and (implicitly) aims to construct such 

knowledge. This assumption narrows the search space to representations that are 1) candidates 

for serving our species’ subjective goal of possessing useable causal knowledge and 2) logically 

consistent with that goal. Omitting the constraint results in logical inconsistency during the 

search in that vast space. It follows that “normative” statistical inference, whether frequentist or 

Bayesian, will not yield useable causal knowledge if it violates the causal invariance constraint. 
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