Phil Kellman

kellman

Distinguished Professor
Adjunct Professor of Surgery
Ph.D.: University of Pennsylvania
Primary Area: Cognitive Psychology
Address: 7514 Pritzker Hall
Phone: (310) 825-4202, (310) 454-8115
Email: kellman@psych.ucla.edu

Research and Teaching Interests:

  • Visual perception of objects, space, and motion
  • Perceptual learning and development
  • Perceptual learning, visual cognition, and adaptive learning in education, skill acquisition, and educational technology
  • Human factors applications of perception and cognition research
Curriculum Vitae

Representative Publications:

Note:  Representative publications are grouped below by topics:  Visual Perception of Objects, Contours, Surfaces, and Shape; Perceptual Learning and Learning Technology; Adaptive Learning; Perceptual Development.

VISUAL PERCEPTION OF OBJECTS, CONTOURS, SURFACES, AND SHAPE

Baker, N., Garrigan, P. & Kellman, P. J. (In press). Constant curvature segments as building blocks of 2D shape representation. Journal of Experimental Psychology: General. Baker, N., Lu, H., Erlikhman, G., & Kellman, P. J.  (2020). Local features and global shape information in object classification by deep convolutional neural networks. Vision Research172, 46-61. Baker, N., Lu, H., Erlikhman, G. & Kellman, P.J. (2018).  Deep convolutional networks do not classify based on global object shape. PLOS: Computational Biologyhttps://doi.org/10.1371/journal.pcbi.1006613 Baker, N., Kellman, P.J., Erlikhman, G. & Lu, H. (2018). Deep convolutional networks do not perceive illusory contours. In T.T. Rogers, M. Rau, X. Zhu, & C. W. Kalish (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society Baker, N. & Kellman, P.J. (2018). Abstract shape representation in human visual perception. Journal of Experimental Psychology: General, 147(9), 1295–1308; doi: 10.1037/xge0000409. Carrigan, S.B., Palmer, E.M. & Kellman, P.J. (2016). Differentiating global and local contour completion using a dot localization paradigm, Journal of Experimental Psychology: Human Perception and Performance. 2016 Aug 8. [Epub ahead of print] Erlikhman, G. & Kellman, P.J. (2016).  From flashes to edges to objects: Recovery of local edge fragments initiates spatiotemporal boundary formation. Frontiers in Psychology, Special issue on Perceptual Grouping—the State of the Art. 28 June 2016| http://dx.doi.org/10.3389/fpsyg.2016.00910 Erlikhman, G. & Kellman, P.J. (2015). Modeling spatiotemporal boundary formation. Vision ResearchSpecial issue on quantitative approaches in Gestalt perception. pii: S0042-6989(15)00118-2. doi: 10.1016/j.visres.2015.03.016. Erlikhman, G., Xing, Y.Z. & Kellman, P.J. (2014). Non-rigid illusory contours and global shape transformations defined by spatiotemporal boundary formation. Frontiers in Human Neuroscience, http://dx.doi.org/10.3389/fnhum.2014.00978 Ghose, T., Liu, J. & Kellman, P.J. (2014) Recovering metric properties of objects through spatiotemporal interpolation. Vision Research. DOI: 10.1016/j.visres.2014.07.015, published online 8 August 2014. Kellman, P.J., Mnookin, J., Erlikhman, G., Garrigan, P., Ghose, T., Mettler, E., Charlton, D. & Dror, I.E. (2014). Forensic comparison and matching of fingerprints: Using quantitative image measures for estimating error rates through understanding and predicting difficulty. PLoS ONE, 9(5): e94617. Palmer, E. & Kellman, P.J. (2014).  The aperture capture illusion: Misperceived forms in dynamic occlusion displays. Journal of Experimental Psychology: Human Perception and Performance. 40(2), 502-24. Erlikhman, G., Xing, Y.Z. & Kellman, P.J. (2014). Non-rigid illusory contours and global shape transformations defined by spatiotemporal boundary formation. Frontiers in Human Neuroscience, 8:978. doi: 10.3389/fnhum.2014.00978. Ghose, T., Liu, J., & Kellman, P. J. (2014). Recovering metric properties of objects through spatiotemporal interpolation. Vision Research, 102, 80-88. Palmer, E.M. & Kellman, P.J. (2014).  The aperture capture illusion: Misperceived forms in dynamic occlusion displays. Journal of Experimental Psychology: Human Perception and Performance. 40(2), 502-24. Kellman, P.J., Garrigan, P.B. & Erlikhman, G. (2013). Challenges in understanding visual shape perception and representation: Bridging subsymbolic and symbolic coding. In S. J. Dickinson & Z. Pizlo (Eds.), Shape perception in human and computer vision: An interdisciplinary perspective.  London: Springer, pp. 249-274. Keane, B.P., Kellman, P.J., Lu, H., & Papathomas, T.V., & Silverstein, S.M. (2012). Is interpolation cognitively encapsulated? Measuring the effects of belief on Kanizsa shape discrimination and illusory contour formation. Cognition, 123, 404–418. Garrigan, P.B. & Kellman, P.J. (2011). The role of constant curvature in 2D contour shape representations. Perception, 40(11): 1290-1308. Kalar, D., Garrigan, P., Hilger, J., Wickens, T. & Kellman, P.J. (2010). A unified model for contour interpolation. Vision Research, 50(3), 284-299. Kellman, P.J., Garrigan, P., Palmer, E.M. (2010). 3-D and spatiotemporal interpolation in object and surface formation. In C. W. Tyler (Ed.) Computer vision: From surfaces to objects.  London:  Chapman Hall Press. Fantoni, C., Hilger, J., Gerbino, W. & Kellman, P. J.  (2008).  Surface interpolation and 3D relatability.  Journal of Vision, Vol. 8, No. 7, Article 29, 1-19.    Keane, B. P., Lu, H., & Kellman, P. J. (2007). Classification images reveal spatiotemporal interpolation in illusory figures. Vision Research, 47, 3460-3475. Kellman, P.J., Garrigan, P.B., Shipley, T.F. & Keane, B.P. (2007). Interpolation processes in object perception:  A reply to Anderson.  Psychological Review, 114(2): 488-502. Palmer, E. M., Kellman, P. J., & Shipley, T. F. (2006). A theory of dynamic occluded and illusory object perception. Journal of Experimental Psychology: General, 135, 513–541.  (Selected for American Psychological Association Young Investigator Award – best paper published in JEP: General in 2006 by a young investigator (Evan Palmer).) Kellman, P.J., Garrigan, P.,  & Shipley, T. F.  (2005).  Object interpolation in three dimensions. Psychological Review, Vol. 112, No. 3, 586-609. Kellman, P.J., Guttman, S. & Wickens, T. (2001). Geometric and neural models of contour and surface interpolation in visual object perception.  In Shipley, T.F. & Kellman, P.J. (Eds.)  From fragments to objects:  Segmentation and grouping in vision.  Elsevier Press. Shipley, T.F. & Kellman, P. J. (Eds.). (2001).  From Fragments to Objects:  Segmentation and Grouping in Vision.  Amsterdam:  Elsevier Science Press. ISBN 0-444-50506-7.  

PERCEPTUAL LEARNING AND LEARNING TECHNOLOGY

Krasne, S., Stevens, C. D., Kellman, P. J., & Niemann, J. T. (2020). Mastering ECG interpretation skills through a perceptual and adaptive learning module. Academic Emergency Medicine Education & Teaching.  https://doi.org/10.1002/aet2.10454 Mettler, E., Phillips, A., Massey, C., Burke, T., Garrigan, P., & Kellman, P. J. (2019). The synergy of passive and active learning modes in adaptive perceptual learning. In A.K. Goel, C.M. Seifert, & C. Freksa (Eds.), Proceedings of the 41st Annual Conference of the Cognitive Science Society (pp. 2351-2357). Montreal, QB: Cognitive Science Society. Krasne, S. & Kellman, P.J. (2018). Accelerating expertise: Perceptual and adaptive learning technology in medical learning. Medical Teacher, Special issue on adaptive learning in medical education, 40:8, 797-802, DOI: 10.1080/0142159X.2018.1484897. Lerner, N., Gill, M., Scott-Parker, B. & Kellman, P.J. (2017).  Accelerating driver expertise through perceptual and adaptive learning. Report to the AAA Foundation for Traffic Safety, Westat Corp. (Available on NAS website at: https://trid.trb.org/view.aspx?id=1461088) Romito, B., Krasne, S., Kellman, P. & Dhillon, A. (2016). The impact of a perceptual and adaptive learning module on transoesophageal echocardiography interpretation by anaesthesiology residents. British Journal of Anaesthesia117 (4): 477-481. Unuma, H., Hasegawa, H. , & Kellman, P.J. (2016). Perceptual learning facilitates precise mental representations of fractions. The Journal of Kawamura Gakuen Women’s University. 27(1), 35-49. Thai, K.P., Krasne, S. & Kellman, P.J. (2015). Adaptive perceptual learning in electrocardiography: The synergy of passive and active classification. In Noelle, D. C., Dale, R., Warlaumont, A. S., Yoshimi, J., Matlock, T., Jennings, C. D., & Maglio, P. P. (Eds.) Proceedings of the 37th Annual Meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society, 2350-2355. Krasne, S., Hillman, J. D., Kellman, P. J. & Drake, T. A. (2013). Applying perceptual and adaptive learning techniques for teaching introductory histopathology.  Journal of Pathology Informatics, 4, 34-41. Rimoin, L., Altieri, L., Craft, N., Krasne, S. & Kellman, P.J. (2015). Training pattern recognition of skin lesion morphology, configuration and distribution. Journal of the American Academy of Dermatology, 72(3):489-95. doi: 10.1016/j.jaad.2014.11.016.  Bufford, C.A., Mettler, E., Geller, E.H. & Kellman, P.J. (2014). The psychophysics of algebra expertise: Mathematics perceptual learning interventions produce durable encoding changes. In P. Bello, M. Guarini, M. McShane & B. Scassellati, (Eds.), Proceedings of the 36th Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society. Kellman, P.J. & Massey, C. M. (2013). Perceptual learning, cognition, and expertise. In Ross, B. (Ed.). Psychology of Learning and Motivation, Volume 58, Academic Press, Elsevier, Inc. Thai, K., Mettler, E., & Kellman, P. J. (2011). Basic information processing effects from perceptual learning in complex, real-world domains. In L. Carlson, C. Holscher, & T Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive  Kellman, P.J., Massey, C.M & Son, J. (2010). Perceptual learning modules in mathematics: Enhancing students’ pattern recognition, structure extraction, and fluency.  Topics in Cognitive Science (Special Issue on Perceptual Learning), Vol. 2, Issue 2, 285-305. Massey, C.M., Kellman, P.J., Roth, Z. & Burke, T.  (2010). Perceptual learning and adaptive learning technology:  Developing new approaches to mathematics learning in the classroom. In Stein, N.L. (Ed.), Developmental and learning sciences go to school: Implications for education. NY: Taylor & Francis. Kellman, P.J., Massey, C.M., Roth, Z., Burke, T., Zucker, J., Saw, A., Aguero, K.E. & Wise, J.A. (2008). Perceptual learning and the technology of expertise: Studies in fraction learning and algebra. Learning Technologies and Cognition: special issue of Pragmatics & Cognition, 16:2, 356–405.

Kellman, P.J. & Garrigan, P.B. (2009).  Perceptual learning and human expertise.  Physics of Life Reviews, Vol. 6, No. 2, 53-84. Garrigan, P.B. & Kellman, P.J. (2008). Perceptual learning depends on perceptual constancy. Proceedings of the National Academy of Sciences (USA), Vol. 105, No. 6, 2248-2253. Kellman, P.J.  (2002).  Perceptual learning.  In R. Gallistel (Ed.), Stevens’ Handbook of Experimental Psychology, Third Edition, Vol. 3 (Learning, motivation and emotion), John Wiley & Sons.  Kellman, P.J., Burke, T. & Hummel, J.  (1999). Modeling perceptual learning of abstract invariants.  In Hahn, M. & Stoness, S.C. (Eds.). Proceedings of the Twenty-First Annual Conference of the Cognitive Science Society, Mahwah, NJ:  Lawrence Erlbaum Associates, 264-269. Kellman, P.J. & Kaiser, M.K. (1994). Perceptual learning modules in flight training.  Proceedings of the 38th Annual Meeting of the Human Factors and Ergonomics Society, 1183-1187.  

ADAPTIVE LEARNING

Mettler, E., Massey, C., Burke, T.B., & Kellman, P. J. (2020). Comparing adaptive and random spacing schedules during learning to mastery criteria. Proceedings of the 42st Annual Conference of the Cognitive Science Society (pp.   ). Toronto, ON: Cognitive Science Society. Mettler, E., Massey, C., El-Ashmawy, A.K., & Kellman, P. J. (2020). Adaptive vs. fixed spacing of learning items: Evidence from studies of learning and transfer in chemistry education. Proceedings of the 42st Annual Conference of the Cognitive Science Society (pp.   ). Toronto, ON: Cognitive Science Society. Mettler, E., Massey, C.M., Garrigan, P. & Kellman, P.J. (2018). Enhancing adaptive learning through strategic scheduling of passive and active learning modes. In T.T. Rogers, M. Rau, X. Zhu, & C. W. Kalish (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society. Mettler, E.M., Massey, C.M. & Kellman, P.J.  (2016). A comparison of adaptive and fixed schedules of practice. Journal of Experimental Psychology: General, 145(7): 897-917. Kellman, P. (2016). System and method for adaptive perceptual learning; US Patent 9299265B2. https://patents.google.com/patent/US9299265 Mettler, E.M. & Kellman, P.J. (2014). Adaptive response-time-based sequencing in perceptual learning. Vision Research, 99: 111-123. Mettler, E., Massey, C. & Kellman, P. (2011). Improving adaptive learning technology through the use of response times. In L. Carlson, C. Holscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society. Boston, MA: Cognitive Science Society, 2532-2537. Kellman, P. (2006). System and method for adaptive learning; US Patent 7052277. http://www.google.com/patents/US7052277  

PERCEPTUAL DEVELOPMENT

Books: Arterberry, M.E. & Kellman, P.J. (2016). Development of Perception in Infancy: The Cradle of Knowledge Revisited, Oxford University Press. Kellman, P.J. & Arterberry, M.E. (1998). The Cradle of Knowledge: Development of Perception in Infancy, Cambridge, MA: MIT Press. Articles and Chapters: Kellman, P.J. & Arterberry, M.A. (2006). Infant visual perception.  In R. Siegler and D. Kuhn (Eds.), Handbook of Child Psychology, Sixth EditionVolume 2:  Cognition, Perception, and Language.  New York: Wiley. Kellman, P.J. and Banks, M.S. (1997).  Infant visual perception.  In R. Siegler and D. Kuhn (Eds.), Handbook of Child Psychology, Fifth EditionVolume 2:  Cognition, Perception, and Language.  New York: Wiley, 103-146. Kellman, P.J. (1996).  The origins of object perception. In Gelman, R. & Au, T. (Eds.), Handbook of Perception and Cognition, Volume 8:  Perceptual and Cognitive Development, Academic Press. Kellman, P.J. (1995).  Ontogeny of visual space and motion perception.  In Epstein, W. & Rogers, S. (Eds.), Handbook of Perception and Cognition, Volume 5:  Perception of Space and Motion, Academic Press. Hofsten, C. von, Kellman, P.J. & Putaansuu, J.  (1992).  Young infants’ sensitivity to motion parallax.  Infant Behavior & Development, 15, 245-264. Kellman, P. J. (1992).  Kinematic foundations of perceptual development.  In Granrud, C. (Ed.), Development of Perception: The 1989 Carnegie-Mellon Symposium on Cognition, Hillsdale, NJ:  Erlbaum. Kellman, P. J. & Short, K. R. (1987).  Development of three-dimensional form perception.  Journal of Experimental Psychology: Human Perception & Performance, 13(4), 545-557. Kellman, P. J. Gleitman, H. & Spelke, E. S. (1987).  Object and observer motion in the perception of objects by infants.  Journal of Experimental Psychology: Human Perception & Performance, 13(4), 586-593. Kellman, P. J. Von Hofsten, C. & Soares, J. (1987).  Concurrent motion in infant event perception.  Infant Behavior and Development, 10, 1-10. Kellman, P. J., Spelke, E. S. & Short, K. R. (1986).  Infant perception of object unity from translatory motion in depth and vertical translation. Child Development, 57(1), 72-86. Kellman, P. J. (1984).  Perception of three-dimensional form by human infants. Perception & Psychophysics,  36(4), 353-358. Kellman, P. J. & Spelke, E. S. (1983).  Perception of partly occluded objects in infancy.  Cognitive Psychology, 15, 483-524.