Li Cai

rosamariorduna

Professor
Director
Ph.D.: University of North Carolina - Chapel Hill
Primary Area: Quantitative
Home Department: Education
Address: 315 GSEIS Bldg
Phone: x47136
Email: cai@cresst.org

Research and Teaching Interests:

psychometrics, latent variable models, item response theory, nonlinear mixed models, statistical computation

Curriculum Vitae

Representative Publications:

MacCallum, R. C., Browne, M. W., & Cai, L. (2006). Testing differences between nested covariance structure models: Power analysis and null hypotheses. Psychological Methods, 11, 19–35.

Cai, L., Maydeu-Olivares, A., Coffman, D. L., & Thissen, D. (2006). Limited information goodness-of-fit testing of item response theory models for sparse 2P tables. British Journal of Mathematical and Statistical Psychology, 59, 173–194.

Cai, L. (2010). High-dimensional exploratory item factor analysis by a Metropolis-Hastings Robbins-Monro algorithm. Psychometrika, 75, 33-57.

Cai, L. (2010). A two-tier full-information item factor analysis model with applications. Psychometrika, 75, 581-612.

Cai, L., Yang, J. S. & Hansen, M. (2011). Generalized full-information item bifactor analysis. Psychological Methods, 16, 221–248.

Cai, L., & Hansen, M. (2013). Limited-information goodness-of-fit testing of hierarchical item factor models. British Journal of Mathematical and Statistical Psychology, 66, 245–276.

Cai, L. (2015). Lord-Wingersky algorithm version 2.0 for hierarchical item factor models with applications in test scoring, scale alignment, and model fit testing. Psychometrika, 80, 535–559.

Monroe, S., & Cai, L. (2015). Evaluating structural equation models for categorical outcomes: A new test statistic and a practical challenge of interpretation. Multivariate Behavioral Research, 50,  569-583.

Lee, T., Cai, L., & Kuhfeld, M. (2016). A poor person’s posterior predictive checking of structural equation models. Structural Equation Modeling, 23, 206-220.

Falk, C. F., & Cai, L. (2016). A flexible full-information approach to the modeling of response styles. Psychological Methods, 21, 328-347.

Cai, L., Choi, K., Hansen, M., & Harrell, L. (2016). Item response theory. Annual Review of Statistics and Its Application, 3, 297-321.

Hansen, M., Cai, L, Monroe, S., & Li, Z. (2016). Limited-information goodness-of-fit testing of diagnostic classification item response theory models. British Journal of Mathematical and Statistical Psychology, 69, 225-252.


CRESST Website